Ecuación de la onda plana en un espacio no- arquimediano con amortecimiento
Contenido principal del artículo
Resumen
El presente artículo, considera K un cuerpo local no- arquimediano, se muestra que para solucionar la ecuación de la onda plana sobre un espacio no arquimediano se considera una función de prueba f(t + w1x1 + w2x2 + … + wnxn) de valor complejo Bruhat – Schwartz en K, (t,x1,x2, …, xn) Є Kn+1, max|wi| = 1, que satisface para algún , para un cierta ecuación homogénea pseudo-diferencial, un análogo a la ecuación de la onda clásica, se desarrolla la teoría del problema de Cauchy para la ecuación de la onda plana sobre espacio no arquimediano.
Detalles del artículo
Sección
Artículos
Citas
Albeverio, S., Khrennikov, A. & Shelkovich, V. (2003). Associated homogeneous p-adic distributions. Journal of Mathematics Analysis and Applications, 313(1), 64–83. DOI:10.1016/j.jmaa.2005.05.016
Chernov, V. (1970). Homogeneous distributions and the Radon transform in the space of rectangular matrices over a continuous locally compact disconnected field. Soviet Math. Dokl, 415–418.
Cruz, H. (2018). Aplicación del Teorema de Hahn Banach No-Arquimediano: Una introducción a los Espacio Vectorial Normado No-Arquimediano. Epaña: Editorial Académica Española.
Eidelman, S., Ivasyshen, S. , and Kochubei, A. (2004). Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. basel: Birkh¨auser.
Gelfand, I., Graev, M. & Piatetski-Shapiro, I. (1969). Representation Theory and Automorphic. Philadelphia: Saunders.
Helgason, S. (1980). The Radon Transform. boston: Brikhäuser.
Kochubei, A. (2001). Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. New York: Marcel Dekker.
Kochubei, A. (2009). On a p-adic waver equation. Proceedings of the Steklov Institute of Mathematics, 143-147. DOI:10.1134/S0081543809020138
Kozyrev, S. (2004). p-Adic pseudo-differential operators: methods and applications. Proceedings of the Steklov Institute of Mathematics, 138(3), 143–153. DOI: https://doi.org/10.4213/tmf31
Samko, S. (2001). Hypersingular Integrals and Their Applications. London: Taylor and Francis.
Schikhof, W. (1984). Ultrametric Calculus An Introduction to p-adic análisis. Cambrigde University Pres.
Schikhof, W. (2003). A Crash Course In p-Adic Analysis. Cambrigde University Pres.
Schneide, P. (2005). Nonarchimedean Fuctional Analysis. New York: Berlin-Heidel-Berg.
Taibleson, M. (1968). Harmonic analysis on n-dimensional vector spaces over local fields. I. Basic results on fractional integration. Mathematische Annalen, 176, 191–207. http://eudml.org/doc/161690
Vladimirov, V. (2003). Tables of Integrals of Complex-Valued Functions of p-Adic Arguments. Moscow: Steklov Mathematical Institute, 284(2), 3-88. DOI: https://doi.org/10.4213/spm5
Zuñiga, G. (2004). Pseudo-differential equations connected with p-adic forms and local zeta functions. Bulletin of the Australian Mathematical Society, 70(1), 73–86. DOI: https://doi.org/10.1017/S0004972700035838
Chernov, V. (1970). Homogeneous distributions and the Radon transform in the space of rectangular matrices over a continuous locally compact disconnected field. Soviet Math. Dokl, 415–418.
Cruz, H. (2018). Aplicación del Teorema de Hahn Banach No-Arquimediano: Una introducción a los Espacio Vectorial Normado No-Arquimediano. Epaña: Editorial Académica Española.
Eidelman, S., Ivasyshen, S. , and Kochubei, A. (2004). Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. basel: Birkh¨auser.
Gelfand, I., Graev, M. & Piatetski-Shapiro, I. (1969). Representation Theory and Automorphic. Philadelphia: Saunders.
Helgason, S. (1980). The Radon Transform. boston: Brikhäuser.
Kochubei, A. (2001). Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. New York: Marcel Dekker.
Kochubei, A. (2009). On a p-adic waver equation. Proceedings of the Steklov Institute of Mathematics, 143-147. DOI:10.1134/S0081543809020138
Kozyrev, S. (2004). p-Adic pseudo-differential operators: methods and applications. Proceedings of the Steklov Institute of Mathematics, 138(3), 143–153. DOI: https://doi.org/10.4213/tmf31
Samko, S. (2001). Hypersingular Integrals and Their Applications. London: Taylor and Francis.
Schikhof, W. (1984). Ultrametric Calculus An Introduction to p-adic análisis. Cambrigde University Pres.
Schikhof, W. (2003). A Crash Course In p-Adic Analysis. Cambrigde University Pres.
Schneide, P. (2005). Nonarchimedean Fuctional Analysis. New York: Berlin-Heidel-Berg.
Taibleson, M. (1968). Harmonic analysis on n-dimensional vector spaces over local fields. I. Basic results on fractional integration. Mathematische Annalen, 176, 191–207. http://eudml.org/doc/161690
Vladimirov, V. (2003). Tables of Integrals of Complex-Valued Functions of p-Adic Arguments. Moscow: Steklov Mathematical Institute, 284(2), 3-88. DOI: https://doi.org/10.4213/spm5
Zuñiga, G. (2004). Pseudo-differential equations connected with p-adic forms and local zeta functions. Bulletin of the Australian Mathematical Society, 70(1), 73–86. DOI: https://doi.org/10.1017/S0004972700035838