Ecuación de la onda plana en un espacio no- arquimediano con amortecimiento

Main Article Content

Alex Armando Cruz Huallpara

Abstract

El presente artículo, considera  K un cuerpo local no- arquimediano, se muestra que para solucionar la ecuación de la onda plana sobre un espacio no arquimediano se considera una función de prueba f(t + w1x1 + w2x2 + … + wnxn) de valor complejo Bruhat – Schwartz en K, (t,x1,x2, …, xn) Є Kn+1, max|wi| = 1, que satisface para algún  , para un cierta ecuación homogénea pseudo-diferencial, un análogo a la ecuación de la onda clásica, se desarrolla la teoría del problema de Cauchy  para la ecuación de la onda plana sobre espacio no arquimediano.

Article Details

Section
Artículos

References

Albeverio, S., Khrennikov, A. & Shelkovich, V. (2003). Associated homogeneous p-adic distributions. Journal of Mathematics Analysis and Applications, 313(1), 64–83. DOI:10.1016/j.jmaa.2005.05.016

Chernov, V. (1970). Homogeneous distributions and the Radon transform in the space of rectangular matrices over a continuous locally compact disconnected field. Soviet Math. Dokl, 415–418.

Cruz, H. (2018). Aplicación del Teorema de Hahn Banach No-Arquimediano: Una introducción a los Espacio Vectorial Normado No-Arquimediano. Epaña: Editorial Académica Española.

Eidelman, S., Ivasyshen, S. , and Kochubei, A. (2004). Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. basel: Birkh¨auser.

Gelfand, I., Graev, M. & Piatetski-Shapiro, I. (1969). Representation Theory and Automorphic. Philadelphia: Saunders.

Helgason, S. (1980). The Radon Transform. boston: Brikhäuser.

Kochubei, A. (2001). Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. New York: Marcel Dekker.

Kochubei, A. (2009). On a p-adic waver equation. Proceedings of the Steklov Institute of Mathematics, 143-147. DOI:10.1134/S0081543809020138

Kozyrev, S. (2004). p-Adic pseudo-differential operators: methods and applications. Proceedings of the Steklov Institute of Mathematics, 138(3), 143–153. DOI: https://doi.org/10.4213/tmf31

Samko, S. (2001). Hypersingular Integrals and Their Applications. London: Taylor and Francis.

Schikhof, W. (1984). Ultrametric Calculus An Introduction to p-adic análisis. Cambrigde University Pres.

Schikhof, W. (2003). A Crash Course In p-Adic Analysis. Cambrigde University Pres.

Schneide, P. (2005). Nonarchimedean Fuctional Analysis. New York: Berlin-Heidel-Berg.

Taibleson, M. (1968). Harmonic analysis on n-dimensional vector spaces over local fields. I. Basic results on fractional integration. Mathematische Annalen, 176, 191–207. http://eudml.org/doc/161690

Vladimirov, V. (2003). Tables of Integrals of Complex-Valued Functions of p-Adic Arguments. Moscow: Steklov Mathematical Institute, 284(2), 3-88. DOI: https://doi.org/10.4213/spm5

Zuñiga, G. (2004). Pseudo-differential equations connected with p-adic forms and local zeta functions. Bulletin of the Australian Mathematical Society, 70(1), 73–86. DOI: https://doi.org/10.1017/S0004972700035838